IoT Device for Sitting Posture Classification Using Artificial Neural Networks

نویسندگان

چکیده

Nowadays, the percentage of time that population spends sitting has increased substantially due to use computers as main tool for work or leisure and increase in jobs with a high office workload. As consequence, it is common suffer musculoskeletal pain, mainly back, which can lead both temporary chronic damage. This pain related holding posture during prolonged period sitting, usually front computer. presents IoT monitoring system while sitting. The consists device equipped Force Sensitive Resistors (FSR) that, placed on chair seat, detects points where user exerts pressure when complemented Machine Learning model based Artificial Neural Networks, was trained recognize neutral correct well six most frequent postures involve risk damage locomotor system. In this study, data collected from 12 participants each seven positions considered, using developed sensing device. Several neural network models were evaluated order improve classification effectiveness. Hold-Out technique used guide training evaluation process. results achieved mean accuracy 81% by means consisting two hidden layers 128 neurons each. These demonstrate feasible distinguish different few sensors allocated surface implies lower costs less complexity

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

Protein Loop Classification Using Artificial Neural Networks

We used Artificial Neural Network for protein loop classification based on amino acid sequence alone. A new algorithm recently proposed, the Hidden Layer Learning Vector Quantization (HLVQ) was used and its accuracy compared with traditional Multilayer Preceptrons (MLP). The HLVQ algorithm achieved superior accuracy correctly classifying most loops.

متن کامل

Classification of Electroencephalogram Using Artificial Neural Networks

In this paper, we will consider the problem of classifying electroencephalogram (EEG) signals of normal subjects, and subjects suffering from psychiatric disorder, e.g., obsessive compulsive disorder, schizophrenia, using a class of artificial neural networks, viz., multi-layer perceptron. It is shown that the multilayer perceptron is capable of classifying unseen test EEG signals to a high deg...

متن کامل

Natural Object Classification Using Artificial Neural Networks

1 © British Crown Copyright 1999/DERA; Published with the permission of the controller of Britannic Majesty's Stationary Office ABSTRACT In this paper we apply artificial neural networks for classifying texture data of various natural objects found in FLIR images. Hermite functions are used for texture feature extraction from segmented regions of interest in natural scenes taken as a video sequ...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2021

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics10151825